
Mapping to the Windows Presentation Framework

This section maps the main IFML concepts to the .Net Windows Presentation Framework (WFP).

Windows Presentation Framework (WPF) is a part of .NET Framework by Microsoft that is meant
to be the substitute of the old WinForms UI interface. It brings separation of concerns between
interface and code-behind. This is made possible by detaching presentation defined using the
XAML language from business logic written in C#.

Figure 1: WPF metamodel, the Application element

In WPF the interface building blocks are nested. This generates a visual tree that is rendered by the
framework.

The target application is modeled by the Application class which is the main container of all the elements of the model.
It has a start window which is the first one to be opened at startup.

Figure 2: WPF metamodel, the DependencyObject element

All the visual objects inherit from DependencyObject, a class that allows the attachment of
DependencyProperty. This lets define properties that may be shared among all the objects of the

Copyright (c) 2013 IFML

framework and used as target for bindings.

DependencyObject can be split in two classes, Visual and ContentElement. Visuals elements are
actually rendered by the framework, while ContentElements are used to better define the layout of
Visuals.

The main subclass of Visual is UIElement which is used as common superclass to define nesting
among elements of the UI.

The main subclass of UIElement is FrameworkElement which is the one that allows to define
Resources and the DataContext. Resources are objects related to the FrameworkElement
organized as a dictionary; they are used by the framework to enhance and better define layout and
behavior of the interface. DataContext can be associated through a Binding to another object to
define the source of all the contained Bindings, not otherwise specified.

Figure 3: WPF metamodel, the FrameworkElement element

FrameworkElements can be divided in Panels, Pages and Controls.

Panels are UI elements which can contain more than one child. They are classified by behavior:

• DockPanel: this container tries to minimize space wasting by expanding all the children to
fit all the available space.

• TabPanel: it defines a XOR behavior (one by one), allowing to select the child to display
through a tabbed header.

• StackPanel: it put all the children in a stack, queuing them one after another.

• Grid: it features a m by n grid in which all the children are placed. The coordinates of the
cell in which the child resides is defined by the attached properties Grid_Column and
Grid_Row.

Pages are one-child containers that allow navigation in a Frame.

Controls include TextBoxes, ContentControls and ItemsControls.

ContentControls are Windows, UserControls, TabItems and Frames.

• Windows are the outer containers of all UIElements and have at most one child.

• TabItems are one-child containers that allow to define the header used by a TabPanel.

Copyright (c) 2013 IFML

• Frames are controls that can dynamically navigate through Pages using Hyperlinks or
explicit navigation.

ItemsControls are meant to dynamically define their children applying a template to items to be
retrieved by an ItemsSource.

The IFML model is mapped to a WPF application as one window (the startup one) that contains a
frame in which it’s possible to navigate within pages.

All the first level ViewContainers are mapped to pages; to bypass the limitation related to the one-
child nature of pages in WPF, ViewContainers with one child are mapped directly, while the ones
with more children are mapped to pages with a grid as a child.

If there is at least one first level landmark ViewContainer, the main window does not contain
directly the frame, but a grid with two children: the frame and a StackPanel that contains
Hyperlinks to all the landmarked pages.

All the sub-ViewContainers are mapped to grids; otherwise, if they are XOR, they are mapped to
TabPanels whose children are surrounded by TabItems.

All the ViewElementsEvents of type SelectEvent that reference a ViewContainer are mapped to a
StackPanel containing Hyperlinks to all the pages linked by outgoing NavigationFlows.

List ViewComponents are mapped to ListBoxes: if they have a ViewElementEvent of type
SelectEvent with an outgoing NavigationFlow that links to another ViewComponent, they are also
mapped to a ViewSource bound to a ObjectObservableCollection and to a grid which DataContext
is bound to the ViewSource current item.

Forms are mapped to grids; their fields are mapped to TextBox (SimpleField) or ComboBox (SelectField).

Finally since the WPF metamodel is a direct mapping of the entities that compose the .Net
framework for desktop applications, a simple model to text transformation is needed for generating
a working application.

Copyright (c) 2013 IFML

Mapping to Java Swing

This section describes an example of mapping from IFML to Java Swing in order to model very
simple Java-based desktop application.

Java Swing is a Model-View-Controller GUI framework for Java application. Thus it allows to develop desktop
application in Java decoupling the data viewed from the interface from the user interface controls through which it is
viewed.

The desktop application is described by the JavaApplication element, which contains all the
Components.

The Component element is the abstract description of the element of a graphical user interface. In
particular a Component can have a set of child element and a set of Event used to enable the user's
interaction. Furthermore an Event can be associated to a set of Actions

Every Component is a Container. In particular there are the Window, Dialog, JComponent
elements. The first two are pure container while the last comprehends a set of elements that can
contain other element or just show data.

The JComponent element is then specialized by a set of class that represent the actual GUI
elements, for example there are: AbstractButton, that model the general button that is more
specialized by the class JToggleButton, JButton, JmenuItem; JTable, that model a table, JPane,
JTabbedPane, JScrollBar, Jlist, Jlabel and TextComponent, that represent the general
component to edit text, which is further specialized by the class JTextField, JTextArea and
JeditorPanel.

The IFML model is mapped to a JavaApplication element.

Each IFML::Window element is mapped to a Window element (in case of a modal window a
Dialog is created instead).

Copyright (c) 2013 IFML

Figure 4: The Java Swing metamodel

Each not XOR sub-ViewContainer is mapped as a JPane (while a XOR container is mapped as a
JTabbedPane with each of its child ViewContainer mapped as JPane element).

Forms are mapped as JPane elements, their fields are then mapped as JTextField (in case of
SimpleField) or JCheckBox in case of multi selection field).

List are mapped as JList elements.

Details are mapped as JTable showing at each row an attribute of the DataBinding considered.

If events were defined, the corresponding Event is created and associated to the correct
Component. In particular, in case of Select and Submit a JButton is created in order to trigger the
event. If an Action was defined, a element of type Action will be created.

If one or more ViewContainer marked as “landmark” exist, a JMenuBar element will be created in each Window,
containing all the JMenuItem element linking to the landmark ViewContainers.

Copyright (c) 2013 IFML

Mapping to HTML

This section describes an example of mapping from IFML to HTML in order to model a very
simple web application.

The web application is modeled by the WebSite class, which is the main container of all the other
elements. In particular a WebSite is composed by a set of Pages. Then the metamodel describes in
details the structure of each element.

Figure 5: HTML metamodel, the Page and Head element

A Page is composed by a HEAD and a BODY (represeniting the <head> and <body> tags), the
HEAD contains a set of HEADElement while the BODY a set of BODYElement, both of them
inhertis from the general class HTMLElement and are abstraction of the concrete html tag.

The HEADElement comprehends the TITLE and LINK tags, while the BODYElement
comprehend all the html tags used for creating web pages (P, TABLE, FORM, DIV, A etc..).

In order to allow the nesting of tags, the HTMLElement class has a reference to a set of children
HTMLElement.

Copyright (c) 2013 IFML

The IFML model is mapped to a WebSite element.

Every first level ViewContainer is mapped to a Page element, in particular the one marked as
“home” will be named “index”.

Each sub-ViewContainer will be mapped to a DIV element.

Each NavigationFlow not associated to a SystemEvent is mapped to a A element. If an Action is
present, its name will be appended at the end of the link.

Forms are mapped into FORM element and their fields are mapped to corresponding INPUT
elements.

Details are mapped into a UL – LI elements, in which each list item is a attribute of the data
binding considered.

Lists are mapped into TABLE, in which the first row is composed by the field of the corresponding
data binding. If a SelectEvent is associated to the component, then a last column is added which
contains a A element.

If one or more ViewContainer marked as “landmark” exist, a DIV element containing all the A
element linking to the landmark ViewContainers will be created in each Page.

Copyright (c) 2013 IFML

Figure 6: HTML metamodel, a fragment of the BODY element

	Mapping to the Windows Presentation Framework
	Mapping to Java Swing
	Mapping to HTML

