IFML by Example:
Modeling GMail

1 Introduction

This document exemplifies the modeling constructs and the expressive power of IFML by modeling a popular Rich Internet
Application: Gmail (www.gmail.com).

2 The Content Model

Gmail is an application for managing mail messages and contacts of users.

A User possesses a set of MailBoxes. A MailBox (aka System Tag) consists of a set of MailMessages, MailMessages are
organized not only in MailBoxes but also in user-defined clusters, called Tags. Therefore, MailBoxes and Tags can be seen
as special cases of a common concept of MailMessageGroup. A user can also manage ChatConversations, which are
composed of ChatMessages.. A User is also associated with a set of Contacts. Contacts are clustered in ContactGroups.

Copyright © 2013 (@ www.ifml.org and webratio.com

http://www.gmail.com/

Interaction Flow Modeling Language (IFML) ad/2012-08-xx

package |IFhL_gmail_example)

KdataTyper> LdataType»> KdataTypear> <<dataTyper>
Date Time Blob Password
<<Class=>
Attachment
+name : String
<<Class>> +toChatessage * Sl <<Class>> +wvalue : Blob
ChatConversation ChatMessage [~ Message
1 +chattessageChatConversation +recipient : String * | smm2Attachment
+message : Sting
* | +user2ChatConversation

1.* +chatvessagezUser
1 | +attachmentZmailMessage

1 | +chatConversation2User
<z(Class==

attdessagezllser

==(Class=>
User

<<(Class>>
MailMessageGroup

1.*

+mmgtohdailMessage

MailMessage

1.* +bceZmailMessage

+subject : String
+hodhy : String

1.* +ccZmailMessage

+ugername : String +colour : String smm2Mailessage Group +date : Date
+password | Password 1= +time : Time 1.* +to2mailMesshge
© |+read : Boolean
1 | +groupZuser
<<Class=> +fromZmailtdessage 1.*
MailBox +tag?subTag <<Class>>
Tag
41J +subTagTay
1.% | +userdgroup / 1.%| +o #1400 | % 4pee
<<Class>> rom |1 ——
<<Class>> <<Class>> 1 +contactZcontactGroup® Contact e 'Str::glq e
Group l}——{ ContactGroup +picture : Blob E— = :
+name : String +contactGroup2eontact |+ phone : String + email4ddress : String

Figure 1: the content model of the GMail application

Copyright © www.ifml.org and WebRatio.com

3 Model of the Interface

The Gmail interface consists of a top-level container, which is logically divided into two alternative
sub-containers one for managing MailMessages and one for managing Contacts'.

£2) Gmail - Inbox (2) - pierofraternali@gmail-com - Mozilla Firefox
Eie Edit Miew History Bookmarks Tools Help

€ 9 % | | I google.com

-google.

o =EIcCE P[] [Feedback -

2 search s wwwan1zc.. (3 cont [E Member Home - w3c 5 COOP-2012-orksho... |USI UST - MMI - Informatic... <y Piero Fraternal

Piero Fraternali ~

 Geail o]

Mail - c more 1-9ure o
BT T - G T R = P AT Ve e W s S A o 0 M
I Inbox (2)
John Lomas BPM4pcople Gompany Roporting Dear All. We are just arriving at menth 6 of the praject. and all partners n Fcb 8
Starred
Jmportant YouTube Your Personal YouTube Digest - Feb 3, 2012 - Change Email Preferences YouTube Logo Your Personal i Feb 3
Chats WoligangKlingC (Google D IFML brainstorming - Maybe normal termination is not an ev._. - New replies on IFML brainstorming — Change Feb 2
Sent Mail
Marco Brambilla (Goog (2) Request to share IFML_P_WorkPlan doc - Request to share You are the owner of IFML_P_WaorkPlan doc_ Feb 1
Drafts
All Mail WolfgangKlingC (Google D IFML brainstorming - The send action is contained in the t._ - New replies on IFML brainstorming — Change 1 Feb 1
Spam WolfgangKlingC (Google D. IFML brai ing - What kind of i may contain a... - New replies on IFML brainstorming — € Feb 1
Trash
me test - test Jan &
VWater
More « Florian Daniel (Google D BI'M4Pcople Trento mesting minutes (pierofraternali@gmail com) - Ive shared B MANcople Trenta meeting 12/7/11 B
Frisinghelli Matteo Water | (no subject) - Matteo Frisinghelli Dott Ing. Matteo Frisinghelli Responsabile Generale Servizio ldrico & 12/6/11
0% funt ©2012 Google - Terms & Privacy Last account activity: 23 minutes ago
Using 40 MB of your 7677 MB Details
htip: le..com/profiies | "~ ~

Figure 2: The Gmail view container for MailMessages

< || - P M || remise -

ust UST - MMI - Informatic.

1 cont @8 Member Home - w3c] COOP-2012-Worksho.

& Piero Fraternali

Craail

Contacts ~ 2+ More Piero Fraternali - Piero Fraternali Lz
_ Plero Fraternall pierofraternali@gmail.com
HEW CONTACT
[oy comacem

WaterGroup
Most Contacted (20)
Othar Contacts (42)

New Group
Import Contacts

Figure 3: Gmail view container for Contacts

By default, when Gmail is accessed, the container for managing MailMessages is presented. At any
moment, it is possible to Switch from the MailMessages to the Contacts view components, by means of
a menu, shown in Figure 4.

' For simplicity we do not consider the activity management functionality of GMail.

Copyright © 2013 (@ www.ifml.org and webratio.com

+You Gmail Calendar Documents Photos Sites Search More -

Gi*"i‘.,il “

Mail - A a o [] | L 2 !
Mail
Contacts Corso Di Fotografia Milano - Polifemo.milano.it/corso_fotografia - Corso di Fotografia
| Tasks
Your Personal YouTube Digest - Feb 3, 2012 nbox x
Starrard

Figure 4: A menu allows one to switch from the MailMessages to the Contacts view components

The model of the top level container of Gmail is shown in Figure 5

[¥OR] GMAIL Top

[T¥] [L] MailMessages [[L] Contacts

Figure 5: IFML model of the Top Container of Gmail.
Notations

1. The nesting of mutually exclusive view containers into a view container (isXOR property equal
true) is denoted with a [XOR] icon.

2. The default view container (isDefault property equal true) of a set of mutually exclusive view
sibling containers is denoted with a [D] icon on container.

3. The global reachability of view container from all the other sibling containers and their children
sub-containers is denoted with a [L] (Landmark) icon on container.

Model usability

+ The use of the [L] (Landmark) icon reduces the number of navigation events that need to be
explicitly represented (otherwise one event should be necessary in all the view containers from
which the target view container is reachable), resulting in simpler models.

The MailMessages view container comprises five main nested elements:
« aview component (MboxList) showing a list of MailBoxes and Tags;

a view container (MessageSearch) permitting the user to input search keywords to be matched
against the MailMessages;

a MailBox view container, permitting one to access the messages of a specific MailBox or

Copyright © 2013 (@ www.ifml.org and webratio.com

associated with a specific Tag and the details of a specific message;
« a MessageWriter view container, permitting one to access the details of a specific message;
« aSettings view container, permitting one to modify the settings of Gmail.

The MailBox, MessageWriter, and Settings view containers are in alternative: only one at a time is
displayed. None of these alternate view containers is the default one, because they are all accessed as a
consequence of an explicit user’s choice. The MessageWriter and Settings view containers are denoted
as landmark, because they are reachable from all the other sibling view containers of the MailMessages
view container. Conversely, the MailBox view container is not denoted as landmark, because it is
accessed only by means of a specific interaction event: the selection of a Mai/Box from the MboxList
view component.

The MailBox view container comprises the view component (MessageList) showing the MailMessages
associated to a given MailBox or Tag. The MboxList allows user interaction: selecting a specific
MailBox or Tag the user produces a navigation event that results in changing the content of the
Messagelist, so to display the messages of the selected MailBox or Tag. This behavior is represented in
the model fragment shown in Figure 6.

[¥OR] GMAIL Top

[¥] [L] Messages

[¥OR] MessageSearch

1
MailBaxList | ——
.

[¥OR] MessageManagement

[MailBox | [[L] Settings

= Message List [L] MessageWritter

Figure 6: Model of the MailMessages view container: a navigation event and parameter passing flow
between the MboxList view component and the MessageList view component denote that the user can
select one mail box and view a list of its messages

Semantics

1. The MBoxList view component is associated with an event, denoted by a circle. A interaction
flow connects the event to the target components affected by it: MessageList. The semantics of
this pattern is that a user’s interaction with the MBoxList view component determines: 1) the
display of the view container that comprises the MessageList view component (the MailBox
XOR child of the MessageManagement) the computation and 2) the display of the target view

Copyright © 2013 (@ www.ifml.org and webratio.com

component (in this case, the MessageList component is computed with the selected MailBox as
input parameter and displayed).

The model of Figure 6 can be refined to show the parameter binding that binds the selection of a

MailBox in the MBoxList component and the display of the messages of that MailBox in the
MessageList view component.

[XOR] GMAIL Top

[D] [L] Messages
— [%OR] MessageSearch

' !
MailBoxList |

r

L J

[¥OR] MessageManagement

MailBox [L] Settings

r

‘."' - Message List [L] MessageWritter

<<ParamBindingGroup == 7
SelectedMailBox =+ MailBox

Figure 7: Notations to express (or infer) parameter dependencies between view components.

{ < <List>> MBanList)
<<=DataBinding>:> MailMessageGroup 1
L "
-y
{]
. _’f r

#=<list>> MessageList

< <DataBinding>> MailMessage

< <ParamBindingGroup>> << ConditionalExpression ==
SelectedMailBox =» MailBox MailMessage in s

mm2MailMessageGroup{MailBox)

“».._ __./.

Figure 8: Notations to express (or infer) parameter dependencies between view components with
extension mechanism.

Language extension and notation

1. In the upper part of Figure 8, a UML-style annotation explicitly expresses that an output

parameter of the source component is associated with an input parameter of the target
component.

2. In the lower part of Figure 8, the model makes use of the IFML extension mechanism. An
<<List>> component is introduced, which extend the basic view component to represent a list
of dynamically extracted data objects. The component refers a content binding of the content
model where the objects of the list belong; it may also refer to an expression to denote a filter
on the instances to display. In this case, the join expression on relationship

Copyright © 2013 (@ www.ifml.org and webratio.com

mm2MailMessageGroup (see content model) dictates that only the messages of the mail box
received as an input parameter are displayed. The semantics of the component may specify
default input and output parameters, so that the parameter binding can be inferred and need not
be explicitly represented: the default output of the MboxList list component is defined as the
selected object of type MailBox: the default input of the MessageList list component is an
object of type MailMessageGroup, as specified by the join expression on the relationship
mm2MailMessageGroup. Since these two parameters match, there is no need of expressing the
parameter binding explicitly.

The MessageList component supports the interaction with mail messages, individually or in sets. On
the entire set of messages, the MarkAllAsRead event permits the user to update the message in the
current MailBox, setting their status to “read” (see Figure 9).

O More =
Mark all as read
Fantastici Sconti Bergamo - stri Cc
Select messages fo see
ore aclions
Silvia Quarter . aire |

Figure 9: The MarkAllAsRead user-generated event marks all messages in the current mail box as
((read »

As shown in Figure 10, the MessageList supports a second kind of interaction: the selection of a subset
of messages; when there is at least one selected message, a view container is displayed
(Messageloolbar), which permits the user to perform several actions in the selected messages:
archiving, deleting, moving to a MailBox/Tag, reporting as spam, etc.

In summary, the MessageList component supports three types of interactive events:

1. an event for selecting the entire set of messages and triggering an action upon them, marking
all as read (Figure 9);

2. an event for selecting/deselecting one or more messages (Figure 10);

3. an event for selecting an individual message and opening it for reading.

Copyright © 2013 (@ www.ifml.org and webratio.com

- [+ | (1] [} |] LY More

Fantastici Sconti Bergamo - www. GROUPOM. it/Bergamo - Con i nostri Coupon a Basso Costo

ol Silvia Quarteroni (Googl WIR book questionnaire (pierofraternali@gmail co

John Lomas BPFM4people Company Reporting - Dear All, We

o YouTube Your Personal YouTube Digest - Feb 3, 2012 - Ch

Figure 10: When one or more messages are selected in the MessageList component, the
MessageToolbar view container is displayed, which allow the user to perform several actions of the
selected set of messages. If all messages are deselected, such view container is no longer displayed

Language extension and notation

1. For making the model more self-explaining and supporting code generation better, it is possible

to further extend IFML with a specific view component: the MultiChoiceList (Figure 11). The
multi choice list would extend the behavior of the list view component with more event types:
the default type (denoted by the default notation) expresses the selection of one element of the
list; the selection/de-selection event type, denoted by a ticker icon, expresses the selection or
de-selection of any number of elements; the set selection event type, denoted by an asterisk,
denotes the triggering of an action on the entire set of element of the list.

/= =Multi-choice List>> MessageList T

J < < DataBinding>> MailMessage

<< ConditicnalExpression= > R
= = t
MailMessage in S one

and Read
mm2MailMessageGroup(MailBox)

L *
Markall

)

£

4

{_ H'|

Message Selection

Figure 11: The <<Multi-choice List>> view component extends the <<List>> view component to
enable more types of interaction events with the element of the list

The behavior of the MessageSelection event of the MessageList view component that triggers the
display of the MessageToolbar view container is modeled as shown in Figure 12.

Copyright © 2013 (@ www.ifml.org and webratio.com

MailBox

Kl |
Markall & 24 .
“ . Messagelist < <ParamBindingGroup= >
SelectedMessages =+ MessageSet
b v y
'\M"‘I/ e -

MaizagaSelection

Defete -1 Message toolbar

.u-..--.iw_-_::'- < «Parameter>> MessagaSat < < ActivationExpressions >
A not MessageSet.isEmpty()

Repart -~ T

_ Py o,

haveTo e Labels

Figure 12: User events that mark one or more messages in the current mail box produce the display of
the MessageToolbar view container, which remains visible/active if at least one message is selected

The MessageSelection event has a parameter binding, which associates the (possibly empty) set of
currently selected messages with an input parameter of the MessageToolbar view component. The
MessageToolbar view component is associated with an (activation) expression, which tests that at least
one message is selected.

Notation

1. For better readability of the model, it is possible to name the events, as shown in Figure 11 and
in Figure 12. This annotation can be a guide for producing the implementation, for example it
can be used to generate the labels of buttons and links, the tool tips of commands, and other
similar usability aids.

Semantics

1. The association of a boolean expression to a view container means that the view container is
active/visible if the expression evaluates to true.

The actions performed by the user on the messages (all, or a subset thereof) are represented as shown in
Figure 13. An interaction flow arrow connects the event responsible of triggering the action to the
action itself, supporting the specification of parameter bindings.

Copyright © 2013 (@ www.ifml.org and webratio.com

< <ParamBindingGroup= =
AllMessages = MessageSet

| MailBox
L warkat \ g | st b ‘
' o ark a ‘___'—(
-I—I asRead / _,,f MessageList < <ParamBindingGroup >
SelectedMessages - MessageSet
. . L '\1 4 .
:". lf:-‘—f‘. / Delete ‘7 MassagaSelection \'// ____J___»--"'"-FJ
:1— L; Archive ::Z:.'. Dibete ._,--|--~__M|=_ﬁsage toolbar
Y ' i -“““i“.f\”"'/-.l <<Parameter>> MessageSet = | | < <ActivationExpression >
— 4 {7) not MessageSet.isEmpty(}
(_#——) Report)&+ | Repen
iy Muvel';'_" 7 Labels

<<= ParamBindingGroup> =
MessageSet = MessageSet

Figure 13: The MessagelList view component and the Messageloolbar view container are associated
with events that trigger actions on messages. Actions are represented as components placed outside the
view containers, with input and output parameters

For example, the output parameter (MessageSet) of the MessageToolbar view container is associated
with an input parameter of the business actions Delete, Archive, and Report.

The execution of an action produces an action completion event and the sending of an asynchronous
notification, denoted as a circle linked to the action box. Such a notification sending event is matched
by a system event, which triggers the display of a MessageNotification view component, shown in

Figure 14.

Copyright © 2013 (@ www.ifml.org and webratio.com

The conversation has been moved to the Trash. Learn more Undo

O More
[¥OR] GMAIL Top
[D] [L] Messages
P . [XOR] MessageSearch ' @ i
- . J Message
oy
MailBoxList L) Notification
M 4 Y J
[XOR] MessageManagement
1 MailBox [L] Settings
/ P s
{ P Message Index [L] MessageWritter
/
0)
<< ParamBindingGroup=>=>
SelectedMailBox = MailBox

Figure 14: The MailMessages view container comprises a message notification component, which
displays notifications of executed actions on MailMessages (illustrated above)

Note that the notification reception event is associated with the parameter MessageSet, which can be
used in the MessageNotification component, e.g., to support the undo of the action (not modeled for
brevity).

Some actions on mail messages require a more elaborate interaction flow: Move fo folder and

Associate with tag (see Figure 18). For example, moving a set of selected messages to a folder is done
by first accessing a view container in a new window with the list of available MailBox and Tags (shown

in Figure 15) and then selecting from such list the destination MailBox or Tag.

Copyright © 2013 (@ www.ifml.org and webratio.com

i a (1] i - ‘ More

Maove to
MS in Project Management - EducationDegreeSource | o, | an Sector-focused Mast
AnotherBox
Silvia Quarteroni (Googl WIR bo ili@gmail.com) - I've sh;
ASecondBox
John Lomas BPM4p Water zar All, We are just arri
v YouTube Your Pe Spam 3, 2012 - Change Email
") ~ Trash L
WalfgangKlingC (Google D IFML bi armination is not an ev
Marco Brambilla (Goog. (2) Reques Create new doc - Request to share
Manage labels
WolfgangKlingC (Google D IFML Bramswonmmyg = e senu aceon 15 contained in the t

Figure 15: The MoveTo action is activated by first accessing a modal view container with the list of the
available MailBoxes and Tags and then selecting the target one. The view container comprising the
list of MailBoxes and Tags is also associated with navigation events for creating new tags and
managing existing tags

The view container comprising the list of MailBoxes and Tags is also associated with navigation events
for creating new tags and managing existing tags. For example, the Create New event causes a modal
view container to be displayed, whereby the user can create a new tag and associate the selected
messages with it (see Figure 16).

New Label

Please enter a new label name

[MNest label under

Create Cancel

Figure 16: The Create New event causes a modal view container to be displayed, whereby the user can
create a new tag and associate the selected messages with it

The interaction flow for moving a message to an existing or newly created tag is represented in Figure
17. The view container ([Modal] and [Modeless]) icons annotate the view containers to specify that
they open in a new window and are modal or modeless.

Copyright © 2013 (@ www.ifml.org and webratio.com

Mailbox

r

Markall O M gELiSl

MaisageSelection

Delete ,-|-\Masage toolbar

Aschive T, | < <Parameter=> MessageSet
)
Repart -~ I'_

Mewagaselection
o/ —
T i I

L—

Message toolbar

[XOR] Tags

k4
[Modeless] Tag Chooser

Repagt
r\ Tag Folder
Select Tag |} List

_ L MaveTa v

Yy

-l'; Create Hew

[Maodal] Tag Creator

J:—\
Create ::'I'I N::H‘;afg

., 7

Figure 17: The model of the interaction flow for moving a message to an existing or newly created tag.
The view container TagChooser is a modeless view container (which hides when clicking outside of it)
and the TagCreator is a modal view container.

Archiving, reporting, and associating messages to existing/new tags imply the invocation of business
logic components, as shown in Figure 18.

Copyright © 2013 (@ www.ifml.org and webratio.com

<< ParamBindingGroup> >
AllMessages =» MessageSet

" MailBox
d 1 i Fo i
™ 4 Mark all E Ml g
Pt T Yo |
L e ;’I as Read ‘ ' Messagelist
' b { hY ,/'
C4—() Delete) T
: ‘ 7;/ -] Delete I,-l-\!'\-'lessage toolbar 1
) A H A:chiue;l-\\| < <Parameter>> MessageSet
. . i J."‘ \l_/'
g _,: i ; RrEprt ' _ Regpart I '\:
\ E’; L - : |\ \
e e B .) L L L L L L < MaweTo i
<< ParamBindingGroup > > h . !
< <ParamBindingGroup> = |
MessagesSet <» MessageSet u_“\ M geSet > M geSet | .
et | | [XOR] Tags
., [
|
/ fEmEE T * ______ -:‘Z‘:_ ___________________ ! | | [Modeless] Tag Chooser
> <~ oTag/ e
' Maove to Select Tag |
. folder - Teq Folder
| | 1 o List
i . A
=
<<ParamBindingGroup> > Crexe:Newr
SelectedTag = ATag
! Create Tag [Modal] Tag Creatar
and ‘

T nemme) .
Tag [Move . ! e) New Tag
to folder / | T Folder

b s

< <ParamBindingGroup= >
NewTagMName =» TagName

Figure 18: The model of the interaction flow for moving a message to an existing or newly created tag

In Figure 18 the parameter bindings are modeled explicitly: 1) the selected mail messages are
associated with the input of the Delete, Archive, and Report actions; 2) the SelectedTag parameter,
which corresponds to the user’s choice of a tag to associate with a set of messages, is the input of the
AssociateToTag action. Note that the AssociateToTag action receives the selected message set through a
DataFlow (dashed arrow) coming from the MessageToolbar ViewContainer; 3) the NewTagName
parameter, which corresponds to the new label entered by the user, is the input of the CreateTag action.

The specification of composite action flows is not allowed but the internal functioning of an action
could be specified with an orchestration model (e.g, a UML activity diagram, a SOAML specification,
etc.).

The access to the messages can also occur through a search functionality. An input field supports
simple keyword based search; with a click, the user can also access a more powerful search input form,
where he can specify several criteria to be matched, as shown in Figure 19.

Copyright © 2013 (@ www.ifml.org and webratio.com

GM il “

Search

Mail - All Mail 2 [] LY More
From
Articoli sportivi di alta qualita. Prezzi im
Inbox (1) o
o .onal YouTube Digest - Feb 10, 2012
Starred
Subject t ire (pierofrat li |
Important j questionnaire (pierofraternali@gmail .co
YouTube Digest
Chats ale Company Reporting - Dear All. We :
Has the words
Sent Mail
Fnt anal YouTube Digest - Feb 3, 2012 - CF
Drafts
Doesn't have . e P
Al Mail storming - Maybe normal termination is
Spam 1 share IFML_P_WorkPlan.doc - Reque
[0 Has attachment
Trash : - .
Date within tday % of starming - The send action is containe
AnotherBox

“ storming - What kind of containers may

ASecondBox “ Create filter with this search »

Water ple Trento meeting minutes (pierofrater

Figure 19: The message search functionality (full search modal view container)

The IFML model of the search functionality (shown in Figure 20) comprises a view component
(MessageKeywordSearch) for entering a string to be matched to the mail messages and filter those to be
displayed in the MessageList view component. Such an interaction flow can be represented with an
event associated to the MessageKeywordSearch and a interaction flow to the MessageList view
component; a parameter bindings specifies that the output parameter of the MessageKeywordSearch
view component is associated with the input parameter of the MessageList view component. From the
MessageKeywordSearch another event (Show search options) opens a modal view container
(FullSearch), where the user can input more information to drive the search. In this latter case, the
parameter binding associates each field value of the entry view component to a respective input
parameter of the MessageList component. Note that after giving the input of the FullSearch two
navigations occur. One for the MessageList for showing the search result and another to the Search
container for passing and displaying the keyword search.

The example shown in the right part of Figure 20 illustrates how extending the basic IFML view
components with domain specific view and business logic can make the model more self-descriptive.
For instance, one could define a view component abstracting the notion of input forms for data entry
(denoted by the stereotype <<Entry>>), composed of a set of typed fields (e.g., denoted as nested view
components of type <<SimpleField>>); an <<Entry>> component could expose as default parameters,
the values of the contained fields. The parameter binding would then couple each input field with the
respective parameters of the ConditionalExpression expression of the dynamic list component (as
shown in the right part of Figure 20). Note that the <<List>> view component is associated with
multiple ConditionalExpression expressions, which are used to compute the component when different
navigation events occur. Which expression has to be evaluated is dictated by the parameter binding
associated with the interaction flows of the event triggering the computation.

Copyright © 2013 (@ www.ifml.org and webratio.com

. [#0R] MessageSearch

[D] Search [Modeless] FullSearch
i -\'1 Show search optians B
Message keyword (— L Message Full
search I‘ ' Search
T — N | ey
7 Search mail Search mail
s,
<<ParamBindingGroup=> |
Keyword = Searchk:
& [MailBox 1 < <ParamBindingGroup = >
Keyword =» SearchKey
A A

-
L Message List J=

<< ParamBindingGroup= >
Keyword = SearchKey
From =» FromKey

To =» Tokey

[XOR] MessageSearch

[D] Search [[Modeless] FullSearch
=
[

-
<<ParamBindingGroup> > <<Entry>> Message Keyword Search JIE;, search optians <<Entry>> Message Full Search |
Keyword = Key <<SimpleField>=> Key: String | (|;.,.—-——p <<SimpleField>> Key: String

<

<<SimpleField=> From: String

. 9
..) .
. "~ Search mail M < 4
\ Search mail
Y
MailBox <<ParamBindingGroup > >

Keyword - SearchKey

4

‘é <List>> Message List

<<DataBinding > > MailMessage

<< ConditionalExpression=>> MailMessage IN
mm2MailMessageGroup(Mailbox)

<< ConditionalExpression>> Key IN
T MailM ge.Title OR MailMessage.From OR

<<ParamBindingGroup ==
Keyword < SearchKey
From = FromKey
To = Tokey

S

<<ConditionalExpression>> _..

G

L

Figure 20: The model of the message search functionality (top). The same model refined with the use of
the extended view components <<Entry>> and <<List>> (bottom)

The selection of a message from the MessageList view component causes the MessageDetails view
component to be displayed. Such a component permits the user to access one specific message at a
time. This corresponds to the XOR (MessageManagement and MessageReader) nesting of view
components shown in Figure 21.

Copyright © 2013 (@ www.ifml.org and webratio.com

[XOR] GMAIL Top

[D] [L] Messages

[XOR] h

MailBoxList | ——

| [D] Search

[Mudda&] FullSearch

T Show search aption

Message Full Search

[.m..mmg e,

Search mail L

- Search ml

[*OR] 0

MailBox

[L] Settings

[¥OR] Message Reader

[D] Message List Message Details
f—:\ e
g
. b AL
maal ge List S) Message Details
- 1
™ -
S
y MessageSelectian
\)q—\) Delete
: peless L m toalba
.\”)q—\) Archive & et rj\,ﬂe b .
N[mve/;-\ <<Parameter>= |
L
. Report
A =5
A W,
----------------------- < MoveTa -l
[XOR] Tags

[Modeless] Tag Chooser

Selen'lag’(. Tag F

Associate g ... -
. toTeg/
'\.,."‘_'\4 Mcw:;lo

\(List
I
I{reule Rew

-

_4

[Modal] Tag Creator

New Tag

folder &
Create Tag
— - and
—{ Associate <+
Tag / Move
to folder

Figure 21: The MessagelList and the MessageReader view components are shown in alternative

The example continues with the model of the message composer functionality. This can be activated in

Qe

S
ceme L

-~/

[L] Message Writter

two ways: 1) from any view containers inside the Messages top view container as denoted by the

landmark icon of the MessageWriter view component; 2) from the MessageDetails view component,

by activating the Reply, ReplyToAll, or Forward command, as denoted by the three event and
interaction flows from the MessageReader view component (shown in Figure 22).

Copyright © 2013 (@ www.ifml.org and webratio.com

[XOR] Message Reader - :
} << ActivationExpression>=
[Message Details / MessageRecipients.size() > 1

- P 4
Rl Tou

. - - M ge | /l',-_ Forward

+, Rply

______ A << ParamBindingGroup= >
"7 Messageld & Messageld

. [L] Messagey Wrier

P n
Message Full
Search
.'f.\'.
' Send
[\4—'\ Send

Figure 22: The different ways to access the MessageWriter view component

The link ReplyToAll is active only when the message displayed in the MessageDetails view component
is associated with more than one recipient. This can be expressed as a activation expression associated

with the ReplyToAll event (see Figure 22). The MessageWriter view component has an internal
structure, shown in Figure 23.

Reply | & Replytoall = Forward

Send Save Now Discard

Piero Fraternali <piero fraternali@polimi.it=

IMarco Brambilla <mbrambil@elet. polimi.it=

Add Bee Edit Subject Attach a file Insert: Invitation

Rich formatting » Check Spelling =

On Sat, Feb 18, 2012 at 3:54 PM. Piero Fraternali <piero fratemali@polimi.it= wrote
= This mail is a non sense message to be used in the document illustrating how

= [FML can maodel the GMail client application

= Have fun!

>

= Piero Fraternali

Figure 23: The internal structure of the MessageWriter view component

The view component permits the user to edit a new message, reply to an existing message (to the
sender only or to all) and to forward an existing message. The view component can be represented as a
form composed of different fields: 7o, Cc, Bce, Subject, Body, and Attachment.

Copyright © 2013 (@ www.ifml.org and webratio.com

[¥OR] Message Reader - .
| = < ActivationExpression = >

/ MessageRecipients.size() > 1

| Message Details

-~

fo -'J gy Tan
- - - MHSEQE I(E'!"'ﬂ:lrd /- .._ Forwarg ‘\\\
search \1-
& Feeply .
b _,f"" "‘\ < < ParamBindingGroup>>

Messageld =» Messageld

< < ActivaticnExpression= >
State = "Reply” or "Forward”
[L] Message Writter P

r g <<ParamBindingGroup > >

B Yyv Subject = “Re” + subject
Dis;;r-ii- I-:-:Entry:-:- Message Writter - ',i‘/ from = to
i ¢ oC = oC
|| <=5impleField>> to: String - body < bady

<<SimpleField>=> cc: String Raply AV" % State

==t << ActivationExpression: =

<< SimpleField>> becc: String State = "Reply” or "Forward"
R!nllp "1.‘
™+ <<ParamBindingGroup>>

<< SimpleField>> subject: String

,
Add ce—4 | X . . t - Reply to all
)

< < ActivationExpression= > 'l L ; . subject < "Re" + subject
State = "Reply” or "ReplyToAll" | /_<<SimpleField>> bady: String from > to
- <<SimpleField>=> attachment: . If_ , Forward body = bady
. Wy "Reply” > State
Edie | <<Parameter> > State b
4 % e =<ActivationExpression=>

State = "Reply” or "Forward”

e
Add attachment

% ==ParamBindingGroup==>
% subject = "Fw" + subject
body = body

“Forward” - State

Figure 24: The IFML model of the internal structure of the MessageWriter view component,
with the names of the event displayed for clarity

Note that some form fields can be automatically filled with content (e.g., the 7o field is automatically
set to the mail address of the sender when the Rep/yTo event is raised). This is modeled by considering
that each <<SimpleField>> component of a <<Entry>> component is associated to an implicit input
parameter that denotes the value of the field.

In addition to the form fields view component parts, the MessageWriter view component has an explicit
parameter (State), which denotes four different edit configurations: 1) when the user is editing a new
message, 2) replying to the sender of an existing message, 3) replying to the sender of an existing
message and to all recipients in copy, or 4) forwarding an existing message. These edit configuration
differ in the subset of fields that are automatically filled-in and in the commands that are enabled: for
example Figure 23 shows the edit configuration when the user is replying to the sender of an existing
message and to all recipients in copy.

The MessageWriter view component is associated with three events (Reply, ReplyToAll, Forward) for
switching from one of the ReplyTo, ReplyToAll, and Forward editing configurations to the other two

Copyright © 2013 (@ www.ifml.org and webratio.com

ones. For example, Figure 24 shows that the the event ReplyToAll is active only when the State
parameter has the value Reply or Forward and that its effect is to assign a value to the Subject, To, Cc
and Body field, and set the State parameter to the value ReplyToAll.

Another example of conditional event is the EditSubject one: the event for editing the subject field is
available only when the State parameter is ReplyToAll or Reply.

The model refinement of the MessageWriter view component can go on, by zooming-in inside the
Body field. The Body field can be refined by a nested component, which supports client-side business
logic like the rich formatting and the spell checking of the text.

m Save How Discard ¢ i

L7}
Add Ce Add Bee
Attach a file Insert: lnvitation
B J UT-T-A-T-@eci|SicH EMEZTF S L «PlanTex Check Spelling -
Somea nch tex

Figure 25: The rich text editing toolbar in the Body input field of the MessageWriter view component

Figure 25 shows the rich text editing toolbar in the Body input field of the MessageWriter view
component, which appears when the user clicks on the RichFormatting link shown in Figure 23.

A number of editing commands apply to the text, which rewrite the content of the view component at
the client side. Similarly, the CheckSpelling command triggers a client-side action that highlights in red
the misspelled words.

/"« <RichTextField=> Body

I.__ . _Rl:rruw: Format |Modal] Alert
[ClientSide] . P <<richTextToolBar>> Toolbar (*)
N h

ApplyFormat - &

. T N Cancel T Ok
X _ __-" l\l ’ \I : _._.-J"I
:.}_ p -
[ClientSide] [ClientSide]

ApplyFormat ApplyFormat

Figure 26: The rich text editing toolbar in the Body input field of the MessageWriter view component

Figure 26 shows the IFML model of the rich text editor field. An event corresponding to the
RichFormatting interaction flow permits the user to access the Rich Text Toolbar view container, which
comprises a number of commands for applying formatting to the text; for brevity, we summarize these
commands as the invocation of the ApplyFormat Action, which is shown with the [ClientSide] icon to
denote that it actuates at the client side. Similarly, an event permits the user to trigger the SpellCheck

Copyright © 2013 (@ www.ifml.org and webratio.com

Action, which is also client-side. Finally, from the RichText Toolbar view container an event (the
PlainText link visible in Figure 25) permits one to remove the formatting and go back to the plain text
mode; before firing the action, tough, an alert modal view container is presented where the user can

confirm or discard the format removal action. Discarding the action leads one back to the Body
component and to the Rich Text Toolbar.

Copyright © 2013 (@ www.ifml.org and webratio.com

	IFML by Example: Modeling GMail
	1 Introduction
	2 The Content Model
	3 Model of the Interface

